347 Stainless

Austenitic Stainless Steel with added Columbium

Service. Quality. Value.

Typical Applications

- Oil refineries
- Fired heater tubes
- Thermowells
- Fluid catalytic cracking units (FCC)
- Hanger rods
- Reactor components

Product Description

Type 347 stainless is an austenitic steel alloy with added Niobium/Columbium which acts as a stabiliser. This makes the alloy suitable for service in aqueous and low temperature environments as the alloy has good resistance to intergranular attack. The alloy also offers good resistance to polythionic acid stress corrosion cracking and is therefore a useful a material for use around reactor plants. Type 347 is essentially nonmagnetic in the annealed condition and can only be hardened by cold working. The alloy is used in the oil, gas and chemical sector as well as the nuclear industry.

Key features

- · A multi-purpose austenitic stainless steel
- Excellent heat and corrosion resistance
- Better mechanical properties than 304 make it suitable for many arduous high temperature applications.

Machinability

Good machinability.

Weldability

Weldable by common fusion and resistance techniques.

Availability

Round Bar, plate, sheet, wire tube.

Corrosion resistance

Excellent pitting resistance and good resistance to most chemicals.

Chemical Composition (weight %)										
	Cr	Ni	NG+Ta (8xc)	С	Si	Mn	Р	S	Fe	
min	17.00	9.00	0.04							
max	19.00	13.00	1.00	0.08	0.75	2.00	0.045	0.03	Bal	

Mechanical Properties		
Tensile strength Elongation A5	520 - 680 <60	MPa %

Physical Properties			
Density	7.93	kg/m ³	
Melting Point	1400 - 1425	°C	
Modulus of Elasticity	190-210	GPa	
Maximum use temperature in air	800	°C	
Thermal Expansion	16 - 18	x10 ⁻⁶ /K ⁻¹	

Technical Assistance

Our knowledgeable staff backed up by our resident team of qualified metallurgists and engineers, will be pleased to assist further on any technical topic.

CONTACT_US: Quality & Testing:

Phone: +86 0731 8873 9521

Email: info@hunantube.com

Website: www.hunantube.com

constitute any guarantee of properties or of processing or application possibil	lities in individual cases.	Our warranties and liabilities	are stated exclusively in ou	r terms of trading.